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Too fast, or too late

Director's Message

Many doctors complain that things are moving too fast, but the pace of Al in
health has grown exponentially. If you do not deal with it now, it will be too late.

The message also intends to promote the idea that all radiologists will
eventually adopt Al, thereby replacing their former selves. But regardless of
which replacement scenario seems more likely, no one doubts that Al will

transform how imaging professionals practice medicine.
ﬁ Al Versus Human Image Recognition Error Rates ) )
With estimates of average

Back in 2017, | tweeted “radiologists . dlaghosnc error rates
who use Al will replace radiologists —_— ranging from 3% to 5%,
who don’t” The tweet has taken on a ;;"SLJL% ok B8 Ry SOus there are approximately
life of its own, perhaps because it has a =8 e 40 million diagnostic
double meaning. il S errors involving imaging

surpasses humans

annually worldwide.

Average Human Error = 5%

Curt Langlotz, Director of Al in
health and imaging at Stanford

Source: Unpacking the Al-Productivity Paradox,”
By Erik Brynjolfsson et al., MIT Sloan Management Review, January 2018
sloanreview.mit.edu



ealthcare Data World

2018-2025 Data - Compound Annual Growth Rate (CAGR) @ ’

Cusnpasisoe

Noue.

Todication

Cheat paan, foels ot of &
Findingx

The Cordoedisstizal »d

Provider  Opt-in

Software Genome =

Hospital Registries ent
EHR's Registries

wette aml pulnrsary voscudetue
are wining sorreal lmits i aee. The bunge are choar of frca)

Airspece dissass, preamcthoens, or pheeeal sffuscn. There s

e

e boay findisgs
Tmpresalon
Nm arsta cavdinrm mamners hedines

Payers and P .

Non Retail

CodinaBvat
Outlets Plan Claims PatientiD [[+] gSy PrimaryDiagnosisCode DiagnosisCodeDescription
s 3 A1234-B456 3 ICD-8 E11.64 Type 2 diabetes melitus with hypoglycemia
Mobile Government i

Data and Health Plan 4 A1234-B456 34 ICD-9 125.812 Atherosclerosis of bypass graft of coronary ar...
Wearables e Bi J Claims 5 A1234-B456 34 IcD-9 12510  Atherosclerotic heart disease of native corona...
6 A1234-B456 34 ICD-9 780.96 Generalized Pain

Medical Pharmacy
Claims Claims T A1234-B456 34 ICD-9 784.0 Dizziness and giddiness

Heafthcare ~ Manufacturing Financial Media and Global

Service Entertainment Datasphere 17 B1234-C456 34 ICD-9 M05.59 Rheumatoid polyneuropathy with rheumatoid arth...
18 B1234-C456 M4 ICD-9 Z13.85  Encounter for screening for nervous system dis...

Source: Coughlin et al Intemal Medicine Joumnal article *Looking to tomorrow's healthcare today: a participatory
health perspective”. IDC White Paper, Doc# US44413318, November 2018: The Digitization of the World - From Edge to Core”

The Number of Digital Device Interactions / Capita / Day

SysBP (mmHg)
Temperature (°C)

4,909

2 4 3 [ 1 12 1 16 18 El
Time (days) Time (days)

TV A VT A AN DT IINDIAAE  egte ANAINN AP AN St S
P At AN A VIVt bt PN AP ANAIALAII o ot p [ ANAA N p NI gt b g e NP

YA AN AN IR A A S P A AN A NAA N s P P AN AL N o pr

584
298

e A A N i e e P T T S A S A AN T o e o = i PSS (VN

P AANIPNN A DANAAAS AP S NN oo NV AAPoamm bt Pan N AANANNA paprrorg

2010 s 2020 2025 et S\ AN, )V‘-A"vlt-"a\"\Y/‘n'.“/“f.‘/;."w‘-"\'\f'w"\"\‘\{u,m"\f- A Pamsmndt o Lan ArArarrmdaismdenninf

FANAANMANNAAPANAN VAN S A A AR N NN g ANV AN NAAT Y A AN AT

g AN WAANN VA AN AN S Ay poarr VAt e A A A N NN
A A afla
Source: Coughlin et al Internal Medicine Jounal article "Looking to tomorrow's healthcare today: a participatory health perspective”. A -'v,v‘.'\,‘\j‘.’\z\,.a“ﬁ‘ 'ﬂ-\/r,ﬁ‘,“,"\\,‘“vﬁl_, ﬂl A~ Jl,‘.,f-_,'_\ A A; 1 _A W
IDC White Paper, Doc# US44413318, November 2018: The Digitization of the World - From Edge to Core” 3

A nA

AW Mo p s~ A g

An "‘U"'ﬁ' I‘-ﬂ-“,",‘ "-A"‘v"' A\ "’\“vﬁ» A 'I‘.".).‘, ﬂ‘i’ ‘n

YV v

'.'.‘f'-l\-", ;\".'A\“ .‘('.'_- W

An

AR ~ Al 1 -~ AR anza AN
o WAV~ - AN WA .‘k ﬁ,_,'_ﬁxj'. VAWM AWV



Deep
Learning:
The best
way to
deal with
complex
Cross
modality
healthcar
e data

Fig. 1: Holistic Artificial Intelligence in Medicine (HAIM) framework.
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View consistency network

Embedding is the magic language for Al i
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Transformer: the Power of Al BEHRT (BERT for EHR)

Theory: adopting the mechanism of self-attention, weighting the significance of each

Output part of the input data.

Probadilies— Project December: GPT-3 to create hyper-realistic chatbots

Health Risk Prediction: Predicting the end of life, surgical procedure (surgery), the
Tnear probability of hospitalization
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Explainable Al in Health

(b) Guided Backprop ‘Cat”  (¢) Grad-CAM *Cat’

v

Backbone

2

Li 2018

FPN PYLON
(g) Original Image  (h) Guided Backprop ‘Dog’ (i) Grad-CAM ‘Dog"  (j)Guided Grad-CAM ‘Dog’ (k) Ocelusion map l)og (IResNet Grad-CAM “Dog’
https://ieeexplore.ieee.org/document/8237336

Name | Atectasts  Cardiom.  Effusion  Infitrafion Mass Nodule  Pneumonia  Pneumoth,  Weighted avg,
loU > 0.250r IoR > 0.25
Backbone 0.39£002 10400 0472004 067£001 048£002 001£00 0744002 0174002 0.53 £0.01
Li2018 0364002 0994001 0544002 0734002 0414005 0044003 0724004 0234003 0.5440.01
PYLON (ours) | 0.6340.02 104001 065+001 081+£003 071+£004 049+005 08+003 02+£002 068+0.01
IoU > 0.50rIoR > 0.5
Backbone 0174000 10400 024008 036£002 03£002 00£00 048£0.04 0124001 0.3540.01
L2018 0114001 0974008 0224001 0442002 024003  00£00 052£005 0.13£0.02 0.3540.01
PYLON (ours) [ 0.42£0.03 0994001 0484003 0504003 0614004 0354004 07+003 0154001 0554+ 0.01

(9) (h)

https://arxiv.org/pdf/2010.11475.pdf



Al in Health Competitive Ecosystem

Patient-Facing v Telehealth Y Doctor-Facing
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* Expertise, wisdom, human attitude, care, empathy, mutual understanding, and
support lie at the very base of the medical profession and cannot be automated.

https://www.google.com/books/edition/Artificial_Intelligence _in_Medical Imagi/sseFDWAAQBAJ?hl=en&gbpv=1


https://techburst.io/ai-in-healthcare-industry-landscape-c433829b320c

LLM in Healthcare



Foundation models

Large and reusable Al model trained on enormous quantities of unlabeled data and generalized to any tasks

Multimodal self-supervised training Medical domain knowledge Flexible interactions
.- -
Ex
|
na '
. - l '
Pe Clinical Knowledge Multimodal inputs
notes graphs and outputs
F Reasoning with multiple Dynamic task specification

GMAI knowledge sources

Chatbots for Interactive Augmented Grounded Text-to-protein Bedside decision
patients note-taking procedures radiology reports generation support

-

C
— Regulations: Application approval; validation; audits; community-based challenges; analyses of biases, fairness and diversity

https://www.nature.com/articles/s41586-023-05881-4



What does Large Language Model (LLM) do?

l A@ Language Knowledge g

Memorizing
knowledge

Understanding language

Reasoning based on
knowledge

Generating language

Talk like knowledgeable human, such as a doctor!

https://arxiv.org/abs/2304.13712



a Bedside decision support

EHRs Audio Text
- , ¢ Augmented procedures
Vgg ‘))) E :

I_l_l

Insulin
required!

o---  Why?

To correct

A
—_—

/\/ hyperkalaemia. -~
o

Explain the object
appearing on the left __.§
b Grounded radiology reports on the screen.

[Narrowed joint space|and|osteophytes|,
compatible with osteoarthritis of the ”\\
right hip. L

https://www.nature.com/articles/s41586-023-05881-4

The object resembles an
artery wall, situated close
proximity to the duodenum.
Given size and location, it’s
most likely the aorta

(aortoduodenal fistula). ((( '



Accuracy (%)

Large Language Models are Few-shot Learners
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https://arxiv.org/abs/2005.14165



LLM in Medicine

Medical Communication: patient care, simplification,
translation, monitoring, medical literacy, mental

% health, substance abuse, clinical trial
% Medical Documentation: discharge summaries,
2  authorization letters, radiology report, medical notes,
3 Medical Diagnosis: facilitate clinical decision support,
€ access/summarize patient history, retrieve medical 2
& knowledge and new discoveries g ;’///(;_ L
o : L . g NI
® Maedical Training: workforce training, interactive == |
learning/summarizing, translational, personalized, == /A\\\}i\?@/
medical research/literature review ?’3%%
e 32
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LLM powered Medical Annotation for SDoHs
)

-

Community Presence \
Education Level
Joblessness

Social History:

lives at home with wife and daughter. Planning to visit other
daughter abroad in [**Name (NI) 311**] in [**Name (NI) 547**].
works as psychologist. No tobacco, occasional EtOH, no other
drugs "since the 60s."

Homelessness

AN

Alcohol Use
K j Tobacco Use
Drug Use /
SDoH Training Set (2048)  Accuracy = AUROC Cost
Community Presence Human Annotated 0.924 0.975 $508.16
(1 Example) GPT-Annotated 0.903 0.960 S1.41
Joblessnhess Human Annotated 0.94 0.977 S508.16
(2 Examples) GPT-Annotated 0.893 0.945 $2.92
Alcohol Use Human Annotated 0.913 0.966 $508.16
(1 Example) GPT-Annotated 0.864 0.924 $1.04
Tobacco Use Human Annotated 0.935 0.976 $508.16
(2 Examples) GPT-Annotated 0.926 0.961 $3.81




Pathology with LLM

Pathology knowledge

\

Image-text
extraction

¥
n
LLM CLP

Instruction following

Training

Speech / Text

' i“@w #Chat L
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Abstract
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Question / Paper retrieval

Generative Foundation Al Assist

PathAsst

ant for Pathology

ﬂ Position
Class

Detection

Multi-instance c!assmcanon

Al-assisted diagnostic model zoo

Question / Assisted diagnosis

Results.

Anélysis

|

Summarize and write a report
Summary

Abstract

Introduction

Funding

\

Visual input example:

Figure 3: PathAsst network architecture.

User What do you notice about this 1mage”

PathAsst Upon examining the provided image patch, I notice the following observations:
1. The nucleus of these cells appears enlarged 2.5-3 times
2. The nuclear membrane appears irregular
3. The cells appear to be abnormal, possibly atypical squamous cells of undetermined
significance (ASC-US)
Based on these observations. I would recommend further testing to confirm the presence of
abnormal cells. An abnormal cervical Pap test result may indicate a hich-risk for cervical
cancer. It’s important to follow up with your healthcare provider for further evaluation and
treatment.

User What do you notice about this image?

LLaVA [21] The image is a close-up view of a blue substance, possibly ink or a dye, dispersed in water.
The blue particles are evenly distributed throughout the water, creating a visually striking
scene. The blue substance appears to be in the form of small spheres or shapes, which
are spread across the entire image. The contrast between the blue particles and the water
makes the scene quite captivating, as the blue elements stand out prominently.

User What do you notice about this image?

MiniGPT-4 [4]

The image shows a group of cells, which are microscopic in size, arranged in a pattern.
The cells are blue and have a round shape. Some of the cells have small black dots on
them, which could be the nuclei. The cells appear to be arranged in a grid-like pattern,
with some cells connected to others. The cells are suspended in a clear liquid, which could
be a solution. The image is likely a microscopic view of a sample of cells.

https://arxiv.org/pdf/2305.15072.pdf



Thank You!

°
I M L Institute for Foundation:
r MACHINE LEARNING

https://aihealth.ischool.utexas.edu/
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