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18 months later83 y/o F, aortic valve replacement, CHF



Perceptron, 1960-70s

3Rosenblatt, F. (1958). The perceptron: A probabilistic model for information 
storage and organization in the brain. Psychological Review, 65(6), 386–408.



• 14 million images

• 21,841 distinct labels:

– 856 types of bird

– 993 types of tree

– 157 musical 
instruments

• Russakovsky O, Deng J, Su H, et al. ImageNet Large Scale Visual Recognition Challenge. Int J Comput Vis. 2015;115(3):211-252. 
• https://www.economist.com/news/special-report/21700756-artificial-intelligence-boom-based-old-idea-modern-twist-not
• http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/

http://www.image-net.org/



Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. ImageNet Large Scale Visual Recognition Challenge. Int J Comput Vis. 2015;115: 211–252. 
http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/
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Karpathy, Andrej & Li, Fei Fei. Deep Visual-Semantic Alignments 
for Generating Image Descriptions, CVPR, 2015

http://www.radiologyassistant.nl/
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FDA Cleared AI Algorithms (N=950)

The Health AI Industry

Radiology 77%

Cardiac 12%

https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices

Medical Specialty FDA devices

Radiology 723
Cardiovascular 98
Neurology 34
Hematology 18
GI/Urology 14
Ophthalmology 10
Anesthesiology 9
Chemistry 8
Pathology 8
Surgery 6
Microbiology 5
Orthopedics 5
Hospital 4
Dental 3
Ear/Nose/Throat 2
OB/Gyn 1
Immunology 1
Physical Med 1
Total 950

FDA Cleared Algorithms (N=950)

Cardiovascular 12%

Other 12%

Radiology 76%





Automatic Radiology Report Generation

9 Slide courtesy of Bao Do, MD



Opportunistic Screening for Coronary Artery Disease

Routine CT: 20M/yr in US“Gated” coronary CT: 2M/yr in US

Eng D, Chute C, Khandwala N, et al. Automated coronary calcium scoring using deep learning with multicenter external validation. NPJ Digit Med. 2021;4(1):88. 
Peng, AW et al (2023). Association of coronary artery calcium detected by routine ungated CT imaging with cardiovascular outcomes. JACC, 82(12), 1192–1202. 
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Slide courtesy of Nigam H. Shah, MBBS, PhD



Drivers of readiness for data sharing: 
• Motivation: 

• alignment of an organization’s 
values with data-sharing priorities

• modulated by extrinsic incentives 
for financial or reputational gains

• Capabilities:
• infrastructure
• people
• expertise
• access to data

Characteristics of AI-ready data sets: 
• accuracy

• completeness

• consistency

• fitness

• availability

• data quality standards

• documentation

• team science

https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2813016 https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2812417
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Publicly-Released AI-Ready Datasets

https://aimi.stanford.edu/research/public-datasets



Geographic Distribution of Cohorts
to Train Deep Learning Algorithms

CA
29%

MA
20%

NY
19%

Other
32%

Kaushal A, Altman R, Langlotz C. JAMA. 2020;324: 1212–1213.
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Foundation Models

Opportunities and Risks of Foundation Models. Center for Research on Foundation Models (CRFM), Stanford 
Institute for Human-Centered Artificial Intelligence (HAI). https://arxiv.org/abs/2108.07258 

https://arxiv.org/abs/2108.07258


ChatGPT=Generative Pre-trained Transformer

Pre-Trained Using Self-Supervised Learning

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html



ChatGPT

19

Trained to be great at dialogue.

https://www.sypnotix.com/reviews/10-ways-i-use-chatgpt-at-home-and-work

Prompt: “What is the meaning of life?”

Response 1 Response 2 Response 3 Response 4

Human raters



Quality and Empathy of Chatbot Explanations

Ayers, J. W., et al. (2023). Comparing Physician and Artificial Intelligence Chatbot Responses to Patient Questions Posted 
to a Public Social Media Forum. JAMA Internal Medicine. https://doi.org/10.1001/jamainternmed.2023.1838

Quality

Physicians

Chatbot

Empathy

Physicians Chatbot

Question about going blind following bleach being 
splashed into an eye, resulting in irritated and dry eye:



Foundation Models in Medicine: 3 Approaches

“Small language 
models” fit for purpose

Generalist foundation 
models “out of the box”

“Build our own” medical 
foundation models

Democratization “ChatGPT moment”Highest accuracy



Patients Have Questions About Their Test Results…

The 21st Century 
Cures Act provides 
patients immediate 
access to their digital 
health information.

“The medical meniscus is 

like a cushion that helps 

your knee move smoothly. 

Over time, it can get a little 

bit worn out or not as fluffy 

as it used to be. It's kind of 

like when your favorite 

pillow gets a little flat but 

still works fine."



Claude

Uses of Large Language Models in Medicine

Explanation for patients

Doctor-patient communication

Visit documentation

Record summarization

Decision support*

https://aibusiness.com/nlp/meta-offers-companies-free-use-of-llama-2-language-model



Challenges of Large 
Language Models

• Inherent limitations of training data

• Hallucination, confabulation

• Planning

• Mathematics

Retrieval-augmented generation (RAG)

Evaluation



Foundation Models in Medicine: Training Dataset Size
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https://arxiv.org/abs/2401.12208 
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Regulatory Challenges for Foundation Models

Defining scope of use

Open-ended inputs and outputs

Foundation models not controlled by device manufacturer

Oversight of an adaptive system

Evaluation and monitoring in the wild

Adapted from Aldo Badano, FDA Digital Advisory Panel, Nov, 2024



Machine

Human

Complementary Expertise of Humans and Machines
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Machine

Human
+

Complementary Expertise of Humans and Machines





HAI Health Policy Meeting Poll Results

Novel regulatory 
framework

Existing 
regulatory 

framework with 
substantial 

modifications

Existing 
regulatory 

framework with 
minor 

adjustments

EFFECTIVE GOVERNANCE OF HEALTHCARE AI CAN BE 
ACHIEVED WITH:

8%

36%

56%

New policy solutions are needed 
for the regulation of health AI.



Recommendations

• Universal electronic data exchange 

• Make patient data donation easy

• Research on explainable AI and human-
computer interaction

• Improve transparency of AI systems

• “Consumer reports” for health AI

• Monitor system performance over time



Engage:

@curtlanglotz

@StanfordAIMI

@StanfordHAI

LinkedIn: aimi-stanford

Join the mailing list: https://aimi.stanford.edu/engage/subscribe

https://aimi.stanford.edu/engage/subscribe
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