Anatomy of an Artificial Intelligence System

and what it means for policymakers

Sorelle Friedler
Shibulal Family Associate Professor

HAVERFORD COLLEGE
DEPARTMENT OF COMPUTER SCIENCE
Why is AI important?
FINANCIAL TIMES

Nvidia hits $1tn market cap as chipmaker rides AI wave

Silicon Valley company joins elite group of US-listed companies including Apple, Microsoft, Amazon and Alphabet

FORTUNE

TECH • A.I.

ChatGPT could rocket Microsoft’s valuation another $300 billion after Nvidia’s massive gains, according to analyst Dan Ives

BY TRISTAN ROVE
May 30, 2023 at 2:24 PM EDT

<table>
<thead>
<tr>
<th>Company</th>
<th>Ticker</th>
<th>Valuation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple</td>
<td>AAPL</td>
<td>$2.788 T</td>
</tr>
<tr>
<td>Microsoft</td>
<td>MSFT</td>
<td>$2.462 T</td>
</tr>
<tr>
<td>Alphabet (Google)</td>
<td>GOOG</td>
<td>$1.576 T</td>
</tr>
<tr>
<td>Amazon</td>
<td>AMZN</td>
<td>$1.248 T</td>
</tr>
<tr>
<td>NVIDIA</td>
<td>NVDA</td>
<td>$991.99 B</td>
</tr>
<tr>
<td>Meta Platforms (Facebook)</td>
<td>META</td>
<td>$672.76 B</td>
</tr>
</tbody>
</table>
Using A.I. to Detect Breast Cancer That Doctors Miss

Hungary has become a major testing ground for A.I. software to spot cancer, as doctors debate whether the technology will replace them in medical jobs.

By Adam Satariano and Cade Metz Photographs

Adam Satariano, a tech correspondent in Europe, and Cade Metz, who writes about artificial intelligence.

Published March 5, 2023 Updated March 6, 2023

Widespread use of the cancer detection technology still faces many hurdles, doctors and A.I. developers said. Additional clinical trials are needed before the systems can be more widely adopted as an automated second or third reader of breast cancer screens, beyond the limited number of places now using the technology. The tool must also show it can produce accurate results on women of all ages, ethnicities and body types. And the technology must prove it can recognize more complex forms of breast cancer and cut down on false-positives that are not cancerous, radiologists said.

The A.I. tools have also prompted a debate about whether they will replace human radiologists, with makers of the technology facing regulatory scrutiny and resistance from some doctors and health institutions. For now, those fears appear overblown, with many experts saying the technology will be effective and trusted by patients only if it is used in partnership with trained doctors.
AI and the future of our food

The potential benefits are huge. Increases in farm productivity could help feed the approximately 2.4 billion people around the world who experience food insecurity and malnutrition and revolutionize the way farmers use their land.

That could come at a cost. The analysis points out potential flaws in the agricultural data that fuels AI-powered systems and the possibility that autonomous systems could place productivity over the environment. That could lead to inadvertent errors causing overfertilization, dangerous pesticide use, inappropriate irrigation or erosion, risking crop yields, water supplies and soil. And wide-scale crop failures could exacerbate food insecurity.

By Erin Blakemore
February 28, 2022 at 9:00 a.m. EST

All three are touted as potential saviors for farmers, and are already being deployed on large farms, where they assist with such tasks as managing crops, milking cows and helping farmers make decisions about their land.
AI in Hiring and Evaluating Workers: What Americans Think

62% believe artificial intelligence will have a major impact on jobholders overall in the next 20 years, but far fewer think it will greatly affect them personally. People are generally wary and uncertain of AI being used in hiring and assessing workers.

Would you want to apply for a job that uses AI to help make hiring decisions?

66% say No 32% say Yes
What is AI?
Any sufficiently advanced technology is indistinguishable from magic.

Arthur C. Clarke
A Basic AI Pipeline

Training

training data pattern finding algorithm trained model
A Basic AI Pipeline

Training

Examples:
- breast cancer scans with radiologist highlighted concerns
- resumes with historical hire / no hire decisions from previous company processes
- text prompts with written responses from specialized contractors
A Basic AI Pipeline

Training

Examples:

• breast cancer scans with radiologist highlighted concerns
• resumes with historical hire / no hire decisions from previous company processes
• text prompts with written responses from specialized contractors

Manual labor from people makes this possible!
A Basic AI Pipeline

Training

Examples:

• breast cancer scans with radiologist highlighted concerns
• resumes with historical hire / no hire decisions from previous company processes
• text prompts with written responses from specialized contractors

Data takeaways:

• Requires data that is accurately able to represent the goal – this is not magic!
• Uses data collected about people who may have privacy concerns with its use.
A Basic AI Pipeline

Training

Model use
A Basic AI Pipeline

Model use

What if this data doesn’t match the original training data well?

Then the input to the model may be far from values it can predict confidently.

Get a person to fix it!
Points of Policy Intervention

Training

- training data
- labels
- pattern finding algorithm
- trained model

Model use

by Stuart Russell and Peter Norvig

The authoritative, most-used AI textbook, adopted by over 1500 schools.

Table of Contents for the US Edition (or see the Global Edition)

I Artificial Intelligence
 1 Introduction ... 1
 2 Intelligent Agents ... 36

II Problem-solving
 3 Solving Problems by Searching ... 63
 4 Search in Complex Environments ... 110
 5 Adversarial Search and Games ... 146
 6 Constraint Satisfaction Problems ... 180

III Knowledge, reasoning, and planning
 7 Logical Agents ... 208
 8 First-Order Logic ... 251
 9 Inference in First-Order Logic ... 280
 10 Knowledge Representation ... 314
 11 Automated Planning ... 344

IV Uncertain knowledge and reasoning
 12 Quantifying Uncertainty ... 385
 13 Probabilistic Reasoning ... 412
 14 Probabilistic Reasoning over Time ... 461
 15 Probabilistic Programming ... 500
 16 Making Simple Decisions ... 528
 17 Making Complex Decisions ... 562
 18 Multiagent Decision Making ... 599

V Machine Learning
 19 Learning from Examples ... 651
 20 Learning Probabilistic Models ... 721
 21 Deep Learning ... 750
 22 Reinforcement Learning ... 789

VI Communicating, perceiving, and acting
 23 Natural Language Processing ... 823
 24 Deep Learning for Natural Language Processing ... 856
 25 Computer Vision ... 881
 26 Robotics ... 925

VII Conclusions
 27 Philosophy, Ethics, and Safety of AI ... 981
 28 The Future of AI ... 1012

Appendix A: Mathematical Background ... 1023
Appendix B: Notes on Languages and Algorithms ... 1030
Bibliography ... 1033 (pdf) and \LaTeX\ bib file and bib data
Index ... 1069 (pdf)

Exercises (website)
Figures (pdf)
Code (website): Pseudocode (pdf)
Covers: US, Global
Definitions

ARTIFICIAL INTELLIGENCE.—In this section, the term “artificial intelligence” includes the following:

1. Any artificial system that performs tasks under varying and unpredictable circumstances without significant human oversight, or that can learn from experience and improve performance when exposed to data sets.

2. An artificial system developed in computer software, physical hardware, or other context that solves tasks requiring human-like perception, cognition, planning, learning, communication, or physical action.

3. An artificial system designed to think or act like a human, including cognitive architectures and neural networks.

4. A set of techniques, including machine learning, that is designed to approximate a cognitive task.

5. An artificial system designed to act rationally, including an intelligent software agent or embodied robot that achieves goals using perception, planning, reasoning, learning, communicating, decision making, and acting.

2019 NDAA
Definitions

COVERED ALGORITHM.—The term “covered algorithm” means a computational process that uses machine learning, natural language processing, artificial intelligence techniques, or other computational processing techniques of similar or greater complexity and that makes a decision or facilitates human decision-making with respect to covered data, including to determine the provision of products or services or to rank, order, promote, recommend, amplify, or similarly determine the delivery or display of information to an individual.

2022 ADPPA
Definitions

CONSEQUENTIAL DECISION. — “Consequential decision” means a decision or judgment that has a legal, material, or similarly significant effect on an individual’s life relating to the impact of, access to, or the cost, terms, or availability of, any of the following:

(1) **Employment**, workers management, or self-employment, including, but not limited to, all of the following: (A) Pay or promotion. (B) Hiring or termination. (C) Automated task allocation.

(2) **Education** and vocational training, including, but not limited to, all of the following: (A) Assessment, including, but not limited to, detecting student cheating or plagiarism. (B) Accreditation. (C) Certification. (D) Admissions. (E) Financial aid or scholarships.

(3) **Housing** or lodging, including rental or short-term housing or lodging.

(4) **Essential utilities**, including electricity, heat, water, internet or telecommunications access, or transportation.

(5) **Family planning**, including adoption services or reproductive services, as well as assessments related to child protective services.

(6) **Health care or health insurance**, including mental health care, dental, or vision.

(7) **Financial services**, including a financial service provided by a mortgage company, mortgage broker, or creditor.

(8) **The criminal justice system**, including, but not limited to, all of the following: (A) Risk assessments for pretrial hearings. (B) Sentencing. (C) Parole.

(9) **Legal services**, including private arbitration or mediation.

(10) **Voting**.

(11) **Access to benefits or services or assignment of penalties**.

2023 CA AB 331
Options

• Sector-specific scoping
 • Example: “Health and health insurance technologies such as medical AI systems and devices, AI-assisted diagnostic tools, algorithms or predictive models used to support clinical decision making, medical or insurance health risk assessments, drug addiction risk assessments and associated access algorithms, wearable technologies, wellness apps, insurance care allocation algorithms, and health insurance cost and underwriting algorithms.”
 list from: White House AI Bill of Rights: Examples of Automated Systems

• Regulatory refinement
 • Identify “consequential decisions” and staff a state agency to update a list of covered algorithms in those areas.
How can policymakers intervene?
Sector-specific Approaches
Narrow and specific red lines

Examples

• Senate: Block Nuclear Launch by Autonomous Artificial Intelligence Act of 2023
• Ban on affective AI in law enforcement

Sector-specific approaches

Example: employment

- Americans don’t want employers to track movements or facial expressions
- Americans want to know that a final hiring decision is made by a person

Options:
- Define a list of employment-specific algorithms
- Set out principles / goals
- Have the state Department of Labor issue guidance on meeting these principles

Americans widely oppose employers using AI to make final hiring decisions, track workers' movements while they work, and analyze their facial expressions

<table>
<thead>
<tr>
<th>% of U.S. adults who say they oppose employers' use of artificial intelligence for each of the following</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hiring</td>
</tr>
<tr>
<td>Making a final hiring decision</td>
</tr>
<tr>
<td>Oppose</td>
</tr>
<tr>
<td>Favor</td>
</tr>
<tr>
<td>Not sure</td>
</tr>
<tr>
<td>Reviewing job applications</td>
</tr>
<tr>
<td>Oppose</td>
</tr>
<tr>
<td>Favor</td>
</tr>
<tr>
<td>Not sure</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Monitoring and evaluations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracking workers' movements while they work</td>
</tr>
<tr>
<td>Oppose</td>
</tr>
<tr>
<td>Favor</td>
</tr>
<tr>
<td>Not sure</td>
</tr>
<tr>
<td>Keeping track of when office workers are at their desk</td>
</tr>
<tr>
<td>Oppose</td>
</tr>
<tr>
<td>Favor</td>
</tr>
<tr>
<td>Not sure</td>
</tr>
<tr>
<td>Recording exactly what people are doing on their work computers</td>
</tr>
<tr>
<td>Oppose</td>
</tr>
<tr>
<td>Favor</td>
</tr>
<tr>
<td>Not sure</td>
</tr>
<tr>
<td>Evaluating how well people are doing their jobs</td>
</tr>
<tr>
<td>Oppose</td>
</tr>
<tr>
<td>Favor</td>
</tr>
<tr>
<td>Not sure</td>
</tr>
<tr>
<td>Analyzing how retail workers interact with customers</td>
</tr>
<tr>
<td>Oppose</td>
</tr>
<tr>
<td>Favor</td>
</tr>
<tr>
<td>Not sure</td>
</tr>
<tr>
<td>Monitoring workers' driving behavior as they make trips for the company</td>
</tr>
<tr>
<td>Oppose</td>
</tr>
<tr>
<td>Favor</td>
</tr>
<tr>
<td>Not sure</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Face recognition technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyzing employees' facial expressions</td>
</tr>
<tr>
<td>Oppose</td>
</tr>
<tr>
<td>Favor</td>
</tr>
<tr>
<td>Not sure</td>
</tr>
<tr>
<td>Tracking how often workers take breaks</td>
</tr>
<tr>
<td>Oppose</td>
</tr>
<tr>
<td>Favor</td>
</tr>
<tr>
<td>Not sure</td>
</tr>
<tr>
<td>Automatically tracking the attendance of their employees</td>
</tr>
<tr>
<td>Oppose</td>
</tr>
<tr>
<td>Favor</td>
</tr>
<tr>
<td>Not sure</td>
</tr>
</tbody>
</table>

Note: Those who did not give an answer are not shown.
Source: Survey of U.S. adults conducted Dec. 12–18, 2022
"AI in Hiring and Evaluating Workers: What Americans Think"
PEW RESEARCH CENTER
Preemptive requirements

Example: employment

- Americans don’t want employers to track movements or facial expressions
- Americans want to know that a final hiring decision is made by a person

Options:
- Define a list of employment-specific algorithms
- Set out principles / goals
- Have the state Department of Labor issue guidance on meeting these principles
- Require that this guidance is met before any such system can be used in the state
Cross-cutting Approaches
Safety and Efficacy

• Why? Examples:
 • predictive policing technology that incorrectly repeatedly sends police back to where they’ve been before
 • gunshot detectors that incorrectly alert and send police into neighborhoods incorrectly and dangerously on alert
 • model to predict sepsis that underperforms and causes alert fatigue
 • AI evaluation of delivery drivers’ road safety incorrectly cost them a bonus
Safety and Efficacy

• Preemptive and ongoing requirements
 • Sector-specific and/or regulations from a Tech-focused agency
 • e.g., requirements that policing technology be shown to work
 • Set up a mechanism where concentrated technical talent can work with sector-specific agencies

• Liability
 • AI decisions / outputs are not covered by Section 230
Prohibit Algorithmic Discrimination

• Why? Examples:
 • Loan underwriting and pricing model charged **HBCU alums** more
 • Hiring tool rejected applicants with “**women’s**” on their resume
 • Statements “I’m **gay**” and “I’m a **Jew**” were marked as toxic
 • Remote exam proctoring systems incorrectly marked **disabled students** as cheating
 • Healthcare risk assessment incorrectly marked **Black patients** as needing less care
Prohibit Algorithmic Discrimination

• Definition:
 ● The term “algorithmic discrimination” refers to instances when automated systems contribute to unjustified different treatment or impacts disfavoring people based on their actual or perceived race, color, ethnicity, sex (including based on pregnancy, childbirth, and related conditions; gender identity; intersex status; and sexual orientation), religion, age, national origin, limited English proficiency, disability, veteran status, genetic information, or any other classification protected by law.
 \textit{EO 14091}
Prohibit Algorithmic Discrimination

• How:
 • Private right of action (e.g., CA AB 331)
 • Sector-specific requirements and oversight
 • Impact assessments
Impact Assessments

• Why?
 • Safety and Efficacy Protections
 • Algorithmic Discrimination Tests
 • Transparency
 • Oversight and Accountability
Impact Assessments

• What:
 ● Detailed, specific questions about the assessment process and results of an algorithmic system
 ● Important: public consultation component
 ● Example: Algorithmic Accountability Act of 2022

• How:
 ● pre-release and ongoing
 ● kept in private company records versus submitted to a state agency
Transparency

- Impact assessments
- Notice – to people impacted \textit{before} use
- Explanation – how and why was a decision made
 - such adverse action notices already required for financial decisions

- Environmental impact (kWh)
 - targeted requirement to report on the kWh used for AI
Data-focused Interventions

• **Data Privacy Protections**
 - Data minimization
 - See, e.g.,: American Data Privacy and Protection Act of 2022 (ADPPA)

• **Intellectual Property Protections**
 - E.g., permission / contract required to use a song as part of training data
Labor

• Ensuring safety and efficacy
 • Require human review for consequential decision systems

• Providing human alternatives
 • Allow people to opt-out and use a provided human alternative

• Protecting jobs
 • Require that AI augments, not replaces, the existing workforce
Recommendations

• Don’t set up a task force! Pick something specific instead.
 • workplace surveillance limits, ban affective AI for law enforcement, etc

• Focus on impacts, not technical details
 • craft AI definitions that are limited based on impact

• Make use of the sector-specific expertise in state agencies and add (shared) technical expertise as necessary
 • sector-specific regulation can be owned by the relevant existing agency

• Be specific when crafting transparency requirements
 • asking specific questions can lead the evaluations you want done to happen
Resources

• White House AI Bill of Rights
 • www.whitehouse.gov/ostp/ai-bill-of-rights
 • “What should be expected” sections include specific actionable safeguards
 • Appendix includes examples of consequential automated systems

• American Data Privacy and Protection Act (2022)
 • bipartisan enforcement framework

• Algorithmic Accountability Act (2022)
 • useful list of specific questions to ask

• CA AB 331 Automated Decision Tools (2023)
 • consequential decision definition including specific domains
Thanks!

sorelle@cs.haverford.edu
Sorelle Friedler, Haverford College