Redistricting technology through the ages

Will Adler

Senior Technologist, Elections \& Democracy
Center for Democracy \& Technology
colt.org
@wtadler

CENTER FOR DEMOCRACY \& TECHNOLOGY wadler@cdt.org

The modern era of redistricting, 1971-

The modern era of redistricting, 1971-

- pre-computer age 1971-1990

The modern era of redistricting, 1971-

- pre-computer* age 1971-1990
*(mostly)

The modern era of redistricting, 1971-

- pre-computer* age 1971-1990
- PC age

1991-2010
*(mostly)

The modern era of redistricting, 1971-

- pre-computer* age 1971-1990
- PC age

1991-2010

- Internet age 2011-

Census tabulation

1790-1870

Census tabulation

1790-1870
"Clerks who made tally marks or added columns of figures with a pen or a pencil."

Census tabulation

1790-1870
"Clerks who made tally marks or added columns of figures with a pen or a pencil."

1880

"A tabulating machine: a wooden box in which a roll of paper was threaded past an opening where a clerk marked the tallies in various columns and then added up the marks."

Census tabulation

1890-1940
Hollerith machine

Source: Computer History Museum

Census tabulation

1951

UNIVAC I computer

Source: U.S. Census Bureau

1971: Very little computerization

- Perhaps only CA, DE, IA, GA, WA use computers.
- Census small geographies were not very useful.

1971: Very little computerization

- Perhaps only CA, DE, IA, GA, WA use computers.
- Census small geographies were not very useful.

1975: PL94-171

- 1975: Congress passes PL94-171 to allow states to work with the Census on geographies. NCSL plays key role in getting it passed.

1981

- Census data not perfect, but much better than 1971.
- Even for the states that did use computers, incredibly laborintensive process.

Let's draw some districts!

Step 1. Receive data from the Census

Tract	POP	CVAP	BVAP
1	6118	4894	1835
2	3324	2659	997
3	589	471	177
4	8251	6601	2475
5	9749	7799	2925
6	4319	3455	1296
7	1155	924	347
8	6355	5084	1907
\ldots	\ldots	\ldots	\ldots

 $+$路
.

Step 1. Receive data from the Census

Tract	POP	CVAP	BVAP
1	6118	4894	1835
2	3324	2659	997
3	589	471	177
4	8251	6601	2475
5	9749	7799	2925
6	4319	3455	1296
7	1155	924	347
8	6355	5084	1907
	\ldots	\ldots	\ldots

Step 2. Print out a really big map.

Step 1. Receive data from the Census

Step 2. Print out a really big map.
Step 3. Crawl around on your hands and knees with dry erase markers, drawing districts on acetate.

Tract	POP	CVAP	BVAP
1	6118	4894	1835
2	3324	2659	997
3	589	471	177
4	8251	6601	2475
5	9749	7799	2925
6	4319	3455	1296
7	1155	924	347
8	6355	5084	1907
\ldots	\ldots	\ldots	\ldots

$$
-2-2
$$

Step 1. Receive data from the Census

Tract	POP	CVAP	BVAP
1	6118	4894	1835
2	3324	2659	997
3	589	471	177
4	8251	6601	2475
5	9749	7799	2925
6	4319	3455	1296
7	1155	924	347
8	6355	5084	1907
\ldots	\ldots	\ldots	\ldots

Step 2. Print out a really big map. Step 3. Crawl around on your hands and knees with dry erase markers, drawing districts on acetate.

Step 4. Record district-tract assignments onto punch cards.

District	Tract
A	1
A	2
A	5
A	6
A	9
B	3
B	4
\ldots	\ldots

Step 1. Receive data from

Tract	POP	CVAP	BVAP
1	6118	4894	1835
2	3324	2659	997
3	589	471	177
4	8251	6601	2475
5	9749	7799	2925
6	4319	3455	1296
7	1155	924	347
8	6355	5084	1907
\ldots	\ldots	\ldots	\ldots

Step 5. Drive to the local
university. Run the punch
Step 5. Drive to the local
university. Run the punch cards through the mainframe overnight.

the Census

 .ceive data from

Step 2. Print out a really big map. Step 3. Crawl around on your hands and knees with dry erase markers, drawing districts on acetate. drawing districts on ace late.

Step 4. Record district-tract assignments onto punch
cards.

District	Tract
A	1
A	2
A	5
A	6
A	9
B	3
B	4
...	\ldots

.
\square

District	Tract
A	1
A	2
A	5
A	6
A	9
B	3
B	4
\ldots	\ldots

(20)
\qquad

```
.
```


Step 4. Record district-tract assignments onto punch cards.

 .| District | POP | CVAP | BVAP |
| :---: | :---: | :---: | :---: |
| A | 25,910 | 20,728 | 7,773 |
| B | 1,410 | 1,128 | 423 |
| C | 2,909 | 2,327 | 873 |
| D | 32,809 | 26,247 | 9,843 |

Step 2. Print out a really big map. Step 3. Crawl around on your hands and knees with dry erase markers, drawing districts on acetate.

Con | ca |
| :---: |
| \square |
| |
| |
| |
| |
| |
| |

.

\square

Step 1. Receive data from
the Census

Tract	POP	CVAP	BVAP
1	6118	4894	1835
2	3324	2659	997
3	589	471	177
4	8251	6601	2475
5	9749	7799	2925
6	4319	3455	1296
7	1155	924	347
8	6355	5084	1907
\ldots	\ldots	\ldots	\ldots

\square

Step 1. Receive data from the Census

Tract	POP	CVAP	BVAP
1	6118	4894	1835
2	3324	2659	997
3	589	471	177
4	8251	6601	2475
5	9749	7799	2925
6	4319	3455	1296
7	1155	924	347
8	6355	5084	1907
\ldots	\ldots	\ldots	\ldots

Step 5. Drive to the local university. Run the punch cards through the mainframe overnight.

Step 2. Print out a really big map. Step 3. Crawl around on your hands and knees with dry erase markers, drawing districts on acetate.

Step 6. Pick up your report.

District	POP	CVAP	BVAP
A	25,910	20,728	7,773
B	1,410	1,128	423
C	2,909	2,327	873
D	32,809	26,247	9,843

Step 4. Record district-tract assignments onto punch cards.

District	Tract
A	1
A	2
A	5
A	6
A	9
B	3
B	4
\ldots	\ldots

Step 7. Did you achieve your objectives? No? Go back to step 2.

1981

1981

1981

1981

Source: UNC Library

1981

Source: Gary Stewart / AP

1991: The culmination of some mid-80s revolutions

- In the mid-80s, revolutions were underway...

1991: The culmination of some mid-80s revolutions

- In the mid-80s, revolutions were underway...
- ... in the Census: TIGER

1991: The culmination of some mid-80s revolutions

- In the mid-80s, revolutions were underway...
- ... in the Census: TIGER
- ... in the legislatures: getting creative

1991: The culmination of some mid-80s revolutions

- In the mid-80s, revolutions were underway...
- ... in the Census: TIGER
- ... in the legislatures: getting creative
- ... in computer hardware: faster, smaller, cheaper

1991: The culmination of some mid-80s revolutions

- In the mid-80s, revolutions were underway...
- ... in the Census: TIGER
- ... in the legislatures: getting creative
- ... in computer hardware: faster, smaller, cheaper
- ... in computer software: graphical user interfaces (GUIs), geographic information system (GIS)

1991: The culmination of some mid-80s revolutions

- In the mid-80s, revolutions were underway...
- ... in the Census: TIGER
- ... in the legislatures: getting creative
- ... in computer hardware: faster, smaller, cheaper
- ... in computer software: graphical user interfaces (GUIs), geographic information system (GIS)
- ... in the law: Gingles factors

COMPUTERWORLD

COMPUTERWORLD

10ut of 3 Clos Lose Their Jobs:

- Were they unable to communicate their
strategies?
- Did they make
uninformed technology
decisions?
- Were they overwhelmed
by the issues?
Makes You Wonder About The Advice
They Were Getting.
As a subsidiary of International Data Group, the world's leading supplier of information on information technology, Technology Investment Strategies Corporation is uniquely positioned to provide a comprehensive set of research and consulting services dealing with the most critical information technology issues of the day.

Experienced and well.
connected within the information
systems community, TISC is
responsive to the individual needs of the clients we serve. What they expect from us is a perspective they can turn into action, and that is precisely what we deliver.

Take the time to get to know us. We'd like to send you our videotape, Technology
Crossroads: Placing Your Bets.
For your free copy, phone
1.800-726-TISC.

Technology Investment strategies Corporation

COMPUTERWORLD

10ut of 3 Clos Lose Their Jobs:

Okay.
 Youre using dBASE.

 Youre trying to develop a payroll application for the entire company, and youve just hit the wall. So the first thing you do is try a few workarounds, then some more. And ignore the fact that you dont have any decent back-up and recovery, data integrity, database security or mult--user concurrency.No big deal. li's only the fate of the company, your closest friends, and their children.

 You an hase Prolesical ORUCLE bor
 retum il tor th tertind
 ORACLE

[^0]
COMPUTERWORLD

10ut of 3 Clos Lose Their Jobs:

Get your VM' Data Center Under Control at the VM Software Seminar.

 ment package with an unmatched reowd of reliable, costeffective performance. Youth also sea a series of tools for improving perform-
ance throughout yeur SNA network. And yog Phe ance throughout your SNA network. And youll have a
chance to exchange insights en a variety of sublects with
an a varicty of subjects wit

Reserve your place today, call (800) 562.7100 (703) $264 \cdot 8413$

SYSTEMS CENTER

COMPUTERWORLD

10ut Of 3 COs Lose Their Jobs:

2001

- Commercial off-the-shelf software available: CityGate, Maptitude
- Can be run off of laptops
- Uses of the Internet are rudimentary
- Some legislatures still building their own software

2011: The Internet age

- Free Internet redistricting software: Dave's Redistricting App, DistrictBuilder
- Public workstations
- Increased access

2021

- Proliferation of free online tools

19E… representable

DistrictBuilder

2021

- Proliferation of free online tools
- States seeing unprecedented interest in redistricting

느․․․․ representable

DistrictBuilder

2021

－Proliferation of free online tools
－States seeing unprecedented interest in redistricting
－Legislatures，commissions，soliciting public input

物皆皆 representable

DistrictBuilder

Beyond 2021

- Anyone can draw a map now.
- Soliciting public input is great, but how are legislatures supposed to make sense of all this public input?

What's a locality?

- Counties
- Communities of interest (COIs)
- Cities, towns, municipalities (Census term: "incorporated places")
- Unincorporated communities (Census term: "censusdesignated places"
- American Indian reservations and associated statistical areas

Why keep localities whole?

Why keep localities whole?

- Preserve political power

Why keep localities whole?

- Preserve political power
- Empower communities

Why keep localities whole?

- Preserve political power
- Empower communities
- Inform voters

Why keep localities whole?

- Preserve political power
- Empower communities
- Inform voters
- Simplify election administration

Statutory requirements

- Detailed rules (OH):
...of the eighty-eight counties in this state, sixty-five counties shall be contained entirely within a district, eighteen counties may be split not more than once, and five counties may be split not more than twice. The authority drawing the districts may determine which counties may be split...No two congressional districts shall share portions of the territory of more than one county, except for a county whose population exceeds four hundred thousand...
- Ambiguous rules (ID):
...[t]o the maximum extent possible, districts shall preserve traditional neighborhoods and local communities of interest.

One way to measure split localities: Just count them

Another way:
 Count the pieces

What's wrong with just counting splits or pieces?

What's wrong with just counting splits or pieces?

- They don't take into account where people are. People need representation, not land.
- A 99/1 split counts the same as a $50 / 50$ split.
- Splitting a low-population locality counts the same as splitting a high-population locality.

A better way: Population-based metrics

- Effective splits
- Conditional entropy
- Square root entropy
- Split pairs

A better way: Population-based metrics

- Effective splits
- Conditional entropy
- Square root entropy
- Split pairs

"Split pairs" metric

28 pairs of people

"Split pairs" metric

20/28 pairs of people are split, for a score of 20/28=0.71

"Split pairs" metric

20/28 pairs of people are split, for a score of 20/28=0.71

A random person does not remember his congressional district, so he picks a person randomly from his locality and asks what that person's district is. Then he guesses that he lives in the same district. What is the probability of guessing wrong? The split pairs metric.

Where to try these metrics?

- Currently:
- Princeton Gerrymandering Project report card
- Representable

Redistricting Report Card

F Learn more about the Florida redistricting. process View Communities of Interest on Representable|Learn more Florida 2021 Draft Staff Congressional Map H000C8001
Select VAP on Tooltip: BVAP ~ (?)

Metrics

Overall Grade

Partisan Fairness

탄
Significant Republican advantage.

Similarly competitive relative to other maps that could have been drawn

Geographic Features

C

Compact districts, typical number of county splits

B: Better than average for the category
C: Average for the category could category, but bias still exists F: Poor for the category, could be much better

Geographic Features ©

Compactness (Avg. Reock) (3)

0

Packed Wins (?

Mean-Median (?)
Partisan Bias ?
2.3\% favoring R
$+3 \% \mathrm{R}$
$+7.1 \% \mathrm{R}$

Additional metrics Avg. Polsby- Min. PolsbyPopper (?) Popper ? ? Split Pairs ?
0.084
0.399

Q jacobwachspress/locality-splitting Public

く) Code () issues il Pull requests (c) Actions © Projects © Wiki (c) Security Liv insights

Metrics of locality splitting/preservation in district maps
Prol wackoer oza

Description

This code accompanies the Center for Democracy \& Technology report, Split Decisions: Guidance for Measuring Locality Preservation in District Maps, by Jacob Wachspress and William T. Adier.

This repository contains Python code that implements a number of metrics for quantifying locality (e.g. county, community of interest) splitting in districting plans. The metrics implemented are:

- Geography-based
- Number of localities split
- Number of locality-district intersections
- Population-based
- Effective splits ${ }^{1}$
- Conditional entropy ${ }^{2}$

Square root entropy ${ }^{3}$

- Split pairs ${ }^{4}$

Thanks!

[^0]: 三If its that important, develop with ORACLE on the PC. Call 1-800-ORACLE1, Ext. 8156.

