

Brain science of addiction January 22, 2022

M. Foster Olive, Ph.D.
Director, Addiction Neuroscience Laboratory
Department of Psychology
Arizona State University
foster.olive@asu.edu

Outline of presentation

- Opioids and the epidemic
- Effects of opioids on the nervous system
- Opioid maintenance therapies
- Addiction as a brain disease
- Future avenues

The opioid epidemic

Three general "waves":

- 1) over-prescription / over-marketing of prescription opioids
- restrictions on amounts of opioids dispensed; patients seek opioids more frequently and turn to widely available low cost heroin
- infiltration of the drug market with highly potent synthetic opioid receptor agonists such as fentanyl and its derivatives

Opioid terminology

- opioids umbrella term for all chemicals acting at opioid receptors
- opiates term for natural and semi-synthetic chemicals derived from the opium poppy (also referred to as narcotics, though this term tends to be associated with other illicit drugs such as cocaine)
- endogenous opioids natural chemical messengers in the brain such as endorphins

The opium harvest

Papaver somniferum

- opium poppies nicked by hand with a blade, allowed to ooze raw opium latex for several days
- · latex collected by hand
- morphine concentrated and acetylated to heroin (diacetylmorphine, diamorphine)

Former opioid products

- 1800's tinctures of opium sold over-the-counter
 - laudanum: ~10% dried opium powder dissolved in 20-50% alcohol
 - paregoric: ~0.4% morphine in 45% alcohol
- 1898-1920 Heroin used as cough suppressant

The human brain

Neuronal communication (chemical synaptic transmission)

receiving zone transmitting zone

- neurotransmitters are chemical messengers secreted by neurons
- range in size from two atoms (nitric oxide) to chains of 20-50 amino acids (endorphins) to larger proteins

Opioid receptors

- opioid drugs bind to μ , δ , and/or κ receptors, which serve as receptors for endogenous opioids such as endorphins
- abused opioids (morphine, fentanyl, hydrocodone, oxycodone, etc.) act as agonists (activators) primarily at μ receptors

Fentanyls

highly potent $\boldsymbol{\mu}$ receptor agonists

fentanyl 1-2 mg

carfentanil 0.02 mg

hydroxymethylfentanyl <0.01 mg

Anatomy of pain

peripheral nerve endings

- sensory information carried by neurons (peripheral nerves) to spinal cord
- enter spinal cord via the dorsal horn
- Aδ and C fibers specifically carry pain sensations
- Aβ and other fibers carry convey normal touch and pressure signals
- opioid receptors are located on only on Aδ and C fibers entering the spinal cord, thus opioids selectively inhibit pain sensations

Distribution of brain opioid receptors

- μ opioid receptors have one of the highest levels of expression in the brain, including reward centers (addiction and motivation) and the brainstem (respiratory control)
- naloxone (Narcan) broad spectrum opioid receptor antagonist (blocker) that displaces opioid drugs from their receptors

Treatment strategies

Opiate Withdrawal Timeline

Start

Take your last dose

72 Hours

Physical symptoms at peak

chills, fever, body aches, diambea, insomnia, muscle pain, nausea. dilated pupils

1 Week

Physical symptoms start to lessen

tiredness, sweating. body aches, anxiety. irritability, nausea

2 Week

Psychological and emotional symptoms

depression, anxiety, irritability, restlessness, trouble sleeping

1 Month

Cravings and depression

symptoms can linger for weeks or months.

withdrawal management medications

Maintenance assisted therapies (MATs)

KRATOM

- long-acting μ receptor agonist
- partial μ receptor agonist
- long but variable elimination half
 Suboxone abuse -life (10-60 hr)
- deterrent formulation
- unregulated μ receptor agonists
- efficacy not yet established

Opioids and polysubstance abuse

- multiple drugs are often used with opioids
- alcohol and benzodiazepines (i.e., Xanax, Ativan, Valium) are often to self-medicate symptoms of withdrawal
- stimulants such as cocaine and methamphetamine used to counteract opioid-induced sedation
- all increase the risk adverse events and overdose

Dopamine theory of addiction

- primary reward or "pleasure" system of brain consists of mesolimbic dopamine system (midbrain connections to forebrain)
- activated by both drug and natural rewards (food, love, music, etc.)
- abused drugs activate this system to greater degree than natural rewards, 'hijacking' the system to favor drug rewards

Hypofrontality theory of addiction

- pleasurable or novel experiences driven by mesolimbic system ("go" circuit)
- prefrontal cortex (PFC) exerts executive control over the "go" system, serves as a "stop" signal to provide impulse control, proper decision-making, and appropriate responses to external cues and punishment
- PFC is last brain region to fully mature
- hypofrontality theory asserts that abused drugs cause deficits in PFC structure and function, leading to impaired impulse control, poor decision-making, and compulsive drug use despite adverse consequences

Disease theory of addiction

Normal

Opioid abuser

- Merriam-Webster dictionary defines a disease as a "a condition of the living animal or plant body or of one of its parts that impairs normal functioning and is typically manifested by distinguishing signs and symptoms"
- brain disease concept largely attributed to Dr. Alan Leshner (then director of National Institute on Drug Abuse) - "addiction is tied to changes in brain structure and function is what makes it, fundamentally, a brain disease"
- concept has gained increasing acceptance, and challenges the long-held view that addiction is a character flaw or moral weakness
- helped destigmatize addiction and increase treatment accessibility

Brain changes in opioid addiction

The molecular neurobiology and neuropathology of opioid use disorder

Christopher A. Blackwood , Jean Lud Cadet

Current Research in Neurobiology 2 (2021) 100023

morphine 10 mg/kg

- oxycodone reduced functional connectivity between PFC and limbic (emotion) circuits
- heroin reduced cortical gray matter, reduced mesolimbic region volume, toxic leukoencephalopathy
- fentanyl, methadone cerebral swelling (edema)
- morphine alterations of fine neuronal structure (animal studies)

Arguments against (or for revision of) the disease theory

frontiers in Addiction and the brain-disease fallacy

March 2014 | Valume 4 | Article 141 | 1

- absolves personal accountability
- some patients can abstain and recover without medical treatment (i.e., Vietnam veteran study)
- minimizes psychosocial and environmental influences
- biases treatment efforts towards medicalized vs.
 psychosocial approaches
- underemphasizes need to understand how the brain recovers from addiction, not just how it becomes addicted

Considerations for future research

- opioid analgesics with minimal abuse liability
- non-opioid-based maintenance therapies
- identification of at-risk populations (gene x environment interactions)
- non-invasive neuromodulatory approaches
- other experimental treatments?

