The Effect of Working from Home on the Agglomeration Economies of Cities: Evidence from Advertised Wages

Sitian Liu and Yichen Su

Queen’s University

Federal Reserve Bank of Dallas

Oct 24, 2023

1The views expressed here are those of the authors and do not necessarily represent the views of the Federal Reserve Bank of Dallas or the Federal Reserve System.
Productivity and wages are higher in larger cities and dense areas than in smaller cities and rural areas—agglomeration economies.

- Knowledge spillovers (interaction);
- Input-output linkages; Professional and business network (interaction).
WFH and Agglomeration Effect of Cities

- Productivity and wages are higher in larger cities and dense areas than in smaller cities and rural areas—agglomeration economies.
 - Knowledge spillovers (interaction);
 - Input-output linkages; Professional and business network (interaction).
- The effect of working from home (WFH) on the agglomeration economies of cities and the aggregate productivity implications.
 - **Pros:** Reduce commuting, better workers’ well-being, higher productivity for some jobs, and better labor allocation ()?
 - **Cons:** Reduce workplace interactions—core building block of agglomeration economies.
Before and After WFH Adoption

▶ Before WFH:
 ▶ Work locations and residential locations are **bundled**.
 ▶ Key mechanisms:
 ▶ Large cities benefit from productivity spillovers from workers’ physical concentration.
 ▶ High-productivity large cities constrained by limited housing supply (high rent).

▶ After WFH became widespread:
 ▶ Work locations and residential locations are **decoupled**.
 ▶ Key mechanisms:
 ▶ Large cities lose productivity due to reduction of onsite workers (↓ aggregate productivity).
 ▶ High-productivity large cities gain access to a larger labor pool beyond their local housing supply constraint (↑ aggregate productivity).
Before and After WFH Adoption

Before WFH:
- Work locations and residential locations are **bundled**.
- Key mechanisms:
 - Large cities benefit from productivity spillovers from workers’ physical concentration.
 - High-productivity large cities constrained by limited housing supply (high rent).

After WFH became widespread:
- Work locations and residential locations are **decoupled**.
- Key mechanisms:
 - Large cities lose productivity due to reduction of onsite workers (↓ aggregate productivity)
 - High-productivity large cities gain access to a larger labor pool beyond their local housing supply constraint (↑ aggregate productivity).
Labor Market in Large Cities: High WFH Adoption During COVID-19
Labor Market in Large Cities: Low WFH Adoption During COVID-19
Data

- Burning Glass Technologies (now called Lightcast).
 - Jobs posted on online job boards.
 - Subsample contains wage information.
 - Date, geography (county), employers, NAICS, SOC.
 - Detailed skill requirements.

- Quarterly Census of Employment and Wages (QCEW): Number of jobs by industry based on firms’ locations.

- Measuring WFH prevalence:
 - American Community Survey (ACS)
 - O*NET
 - American Time Use Survey (ATUS)
Empirical Evidence: ↓ Urban Wage Premium for High-WFH Jobs
Robustness to Alternative Explanations

- Bad WFH definitions?
Robustness to Alternative Explanations

- Bad WFH definitions?
- Selection bias from job postings?
Robustness to Alternative Explanations

- Bad WFH definitions?
- Selection bias from job postings?
- Mechanical result from higher adoption of WFH in large cities?
Robustness to Alternative Explanations

- Bad WFH definitions?
- Selection bias from job postings?
- Mechanical result from higher adoption of WFH in large cities?
- ↓ Commuting time in large cities → ↓ Compensating differentials?
Empirical Evidence: Employment Growth (2019-2022) (Food Services)

San Francisco-Oakland-Hayward, CA
San Jose-Sunnyvale-Santa Clara, CA
Seattle-Tacoma-Bellevue, WA
Orlando-Kissimmee-Sanford, FL
New York-Newark-Jersey City, NY-NJ-PA-
Kansas City, MO-KS
Denver-Aurora-Lakewood, CO
Salt Lake City, UT
Nashville-Davidson--Murfreesboro
Dallas-Fort Worth-Arlington, TX
Austin-Round Rock, TX
Boise City, ID

Change in Ln Employment
Additional Evidence: Decompose the ↓ UWP

- Decline in wage premium in large cities (urban wage premium) among the high-WFH jobs:
 - The returns to *some* skills likely declined in large cities relative to small cities
 - Identifying *which* skills → reveals the driver of the ↓ UWP.

- Skills conducive to interactive activities (e.g., building relationship, marketing, and customer support) ↓ UWP → Less occurrence of productive interactive activities in larger cities → Weakened agglomeration economies.

- Skills complementing remote technologies (e.g., information technology) ↓ UWP → Influx of labor supply to large-city firms.
Additional Evidence: Decompose the ↓ UWP

- Decline in wage premium in large cities (urban wage premium) among the high-WFH jobs:
 - The returns to some skills likely declined in large cities relative to small cities
 - Identifying which skills → reveals the driver of the ↓ UWP.

- Skills conducive to interactive activities (e.g., building relationship, marketing, and customer support) ↓ UWP
 → Less occurrence of productive interactive activities in larger cities
 → Weakened agglomeration economies.
Additional Evidence: Decompose the ↓ UWP

▶ Decline in wage premium in large cities (urban wage premium) among the high-WFH jobs:
 ▶ The returns to *some* skills likely declined in large cities relative to small cities
 ▶ Identifying *which* skills → reveals the driver of the ↓ UWP.

▶ Skills conducive to **interactive** activities (e.g., building relationship, marketing, and customer support) ↓ UWP
 → Less occurrence of productive interactive activities in larger cities
 → Weakened agglomeration economies.

▶ Skills complementing **remote technologies** (e.g., information technology) ↓ UWP
 → Influx of labor supply to large-city firms.
Top Drivers of the UWP (2019 to 2022/2023)

<table>
<thead>
<tr>
<th>Skill</th>
<th>(\pi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communications</td>
<td>22.5%</td>
</tr>
<tr>
<td>Information Technology</td>
<td>22.2%</td>
</tr>
<tr>
<td>Customer and Client Support</td>
<td>21.4%</td>
</tr>
<tr>
<td>Building Relationship</td>
<td>16.1%</td>
</tr>
<tr>
<td>Administration</td>
<td>15.9%</td>
</tr>
<tr>
<td>Marketing and Public Relations</td>
<td>14.1%</td>
</tr>
<tr>
<td>Business Management</td>
<td>11.6%</td>
</tr>
<tr>
<td>Maintenance, Repair, and Installation</td>
<td>6.6%</td>
</tr>
<tr>
<td>Physical Abilities</td>
<td>4.6%</td>
</tr>
<tr>
<td>Human Resources</td>
<td>3.1%</td>
</tr>
<tr>
<td>Creativity</td>
<td>2.9%</td>
</tr>
<tr>
<td>Engineering</td>
<td>2.3%</td>
</tr>
<tr>
<td>Decision Making</td>
<td>2.2%</td>
</tr>
<tr>
<td>Personal Care and Services</td>
<td>2.1%</td>
</tr>
<tr>
<td>Education and Training</td>
<td>1.8%</td>
</tr>
<tr>
<td>Media and Writing</td>
<td>0.8%</td>
</tr>
<tr>
<td>Design</td>
<td>0.6%</td>
</tr>
<tr>
<td>Public Safety and National Security</td>
<td>0.5%</td>
</tr>
<tr>
<td>Agriculture</td>
<td>0.2%</td>
</tr>
<tr>
<td>Economics, Policy, and Social Studies</td>
<td>0.1%</td>
</tr>
<tr>
<td>Energy and Utilities</td>
<td>0.0%</td>
</tr>
</tbody>
</table>
Takeaways

▶ WFH weakened agglomeration economies of large cities
▶ WFH also expands labor pool to more productive cities
▶ The weakening of agglomeration effect outweights the effect of labor pool expansion over 2020-2022
 ▶ May be the reverse over the long run with hybrid models
▶ Caveats:
 ▶ Hybrid model
 ▶ Robust and spontaneous person-to-person interactions made feasible on virtual platforms.