Idaho Advanced Energy Consortium

Kirt Marlow, IAEC Executive Director
June 28th, 2023
Consortium Purpose

• Convene Regional Advanced Energy Industry Stakeholders
 • Clean Energy = Nuclear, Solar, Wind, Battery, Hydroelectric, Hydrogen
 • Construction, Suppliers, Transportation, Manufacturing, State & Local Government, Education, Communities
• Alignment around priorities and pipeline development
• Deliverables to quantify needs and inform strategies
• Third-party advocacy
• Grant coordination
Working Groups & Deliverables

1. WORKFORCE & EDUCATION
 - Gather, validate, and communicate information
 - Workforce and Education needs coming from the industry
 - 2-way communication with elected officials at multiple levels
 - Supply Chain needs and roadblocks

2. STATE AND LOCAL IMPACTS

3. SUPPLY CHAIN
 - Publish annual energy report to the State of Idaho and the Leadership in Nuclear Energy (LINE) Commission
 - Recommended actions, insights, and benchmarking from other regions
U.S. utilities with emissions reduction targets

Advanced Nuclear Versatility

Spectrum of Sizes and Options
- Micro (Few MW)
- Mini (10s of MW)
- Small (100s of MW)
- Large (1,000+ MW)

Variety of Outputs
- Electricity
- H₂ Hydrogen
- Process Heat

Multitude of Uses
- Homes
- Vehicles
- Businesses
- Aviation
- Rail
- Shipping
- Concrete
- Steel
- Factories
- Water
- Space
VCE Study - Overview

- Commissioned Vibrant Clean Energy to model electricity system
 - 95% reduction in carbon emissions by 2050
 - Modest load growth, NREL assumptions for renewables, no CCS

- Nominal case
 - $3800/kW overnight cost
 - Non-binding constraint on expansion

- Constrained case
 - $5500/kW overnight cost
 - Conservative capacity to expand
Nominal Case

Generation: 2,718 TWh
Legacy: 491 TWh
Advanced: 2,227 TWh

Capacity: 404 GW
Legacy: 67 GW
Advanced: 336 GW

Share: 43%

Converted Fossil: 271
Constrained Case

Generation: 827 TWh
Legacy: 575 TWh
Advanced: 252 TWh

Capacity: 146 GW
Legacy: 85 GW
Advanced: 60 GW

Share: 13%

Converted Fossil: 42
Catalyzing the orderbook may require interventions to help manage completion risk

Nuclear industry is in a stalemate

The nuclear industry is stuck in a stalemate where utilities and other potential owners recognize an increasing need for nuclear power, but are too afraid of uncontrolled overrun and project abandonment risk to place committed orders

Developing a committed orderbook could be facilitated by **pooling demand**, e.g., with a consortium of utilities

Participation in such a model could be accelerated with **financial support** (either public or private) to help de-risk the first 5-10 projects

Possible accelerants for generating orders

<table>
<thead>
<tr>
<th>Cost overrun insurance</th>
<th>A percentage of construction costs over and above a certain amount are covered by the government or private insurer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiered grant</td>
<td>Large grant amount per kW, ramping down over each successive deployment, e.g., second reactor receives less than the first</td>
</tr>
<tr>
<td>Government as the owner</td>
<td>Government commits to build and/or operate reactors to provide pooled demand</td>
</tr>
<tr>
<td>Government as the off-taker</td>
<td>Government signs offtake contract for some or all of generation from an orderbook</td>
</tr>
</tbody>
</table>
QUESTIONS?
NRC Licensing Processes

U.S. Licensing Durations and Costs

<table>
<thead>
<tr>
<th>Type</th>
<th>Duration</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC</td>
<td>3 to 4 years (4 to 9)</td>
<td>$45M to $68M</td>
</tr>
<tr>
<td>COL</td>
<td>2.5 to 3.5 years (4)</td>
<td>$28M to $30M</td>
</tr>
<tr>
<td>ESP</td>
<td>2 years (3 to 6)</td>
<td>$6M to $19M</td>
</tr>
<tr>
<td>OL</td>
<td>3 to 3.5 years (8)</td>
<td>$42M</td>
</tr>
</tbody>
</table>

1) DC = Design Certification, COL = Combined Operating License, ESP = Early Site Permit, OL = Operating License
2) NRC Generic Schedules: https://www.nrc.gov/about-nrc/generic-schedules.html
3) NRC Letter to Senator Inhofe April 7, 2015 (ML1508A361)
Advanced Reactor Licensing Progress

1. NuScale Power

*Non-commercial reactors
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Hydropower</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Geothermal</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Renewables + storage²</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Renewables: offshore</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Renewables: onshore</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Natural gas + CCS</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Coal + CCS</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Natural gas</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Coal</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

¹ Additional applications include clean hydrogen generation, industrial process heat, desalination of water, district heating, off-grid power, and craft propulsion and power
² Renewables + storage includes Renewables coupled with long duration energy storage or Renewables coupled with hydrogen storage