

Idaho Advanced Energy Consortium

Kirt Marlow, IAEC Executive Director June 28th, 2023

Consortium Purpose

- Convene Regional Advanced Energy Industry Stakeholders
 - Clean Energy = Nuclear, Solar, Wind, Battery, Hydroelectric, Hydrogen
 - Construction, Suppliers, Transportation, Manufacturing, State & Local Government, Education, Communities
- Alignment around priorities and pipeline development
- Deliverables to quantify needs and inform strategies
- Third-party advocacy
- Grant coordination

Working Groups & Deliverables

- **1. WORKFORCE & EDUCATION**
- **2. STATE AND LOCAL IMPACTS**

3. SUPPLY CHAIN

- Gather, validate, and communicate information
 - Workforce and Education needs coming from the industry
 - 2-way communication with elected officials at multiple levels
 - Supply Chain needs and roadblocks
- Publish annual energy report to the State of Idaho and the Leadership in Nuclear Energy (LINE) Commission
 - Recommended actions, insights, and benchmarking from other regions

U.S. utilities with emissions reduction targets

Source: <u>https://sepapower.org/utility-transformation-challenge/utility-carbon-reduction-tracker/</u>

ŊÊI

Advanced Nuclear Versatility

VCE Study - Overview

- Commissioned Vibrant Clean Energy to model electricity system
 - 95% reduction in carbon emissions by 2050
 - Modest load growth, NREL assumptions for renewables, no CCS
- Nominal case
 - \$3800/kW overnight cost
 - Non-binding constraint on expansion
- Constrained case
 - \$5500/kW overnight cost
 - Conservative capacity to expand

Nominal Case

Constrained Case

Catalyzing the orderbook may require interventions to help manage completion risk

Nuclear industry is in a stalemate	Possible accelerants for generating orders	
The nuclear industry is stuck in a stalemate where utilities and other potential owners recognize an increasing need for nuclear	Cost overrun insurance	A percentage of construction costs over and above a certain amount are covered by the government or private insurer
overrun and project abandonment risk to place committed orders	Tiered grant	Large grant amount per kW, ramping down over each successive deployment, e.g., second reactor receives less than the first
Developing a committed orderbook could be facilitated by pooling demand, e.g., with a consortium of utilities	Government as the owner	Government commits to build and/or operate reactors to provide pooled demand
Participation in such a model could be accelerated with financial support (either public or private) to help de-risk the first 5-10 projects	Government as the off-taker	Government signs offtake contract for some or all of generation from an orderbook

QUESTIONS?

15

LID

CIT

ITTE

IIII

TITT LITT

111 9

NRC Licensing Processes

	U.S.	Licensing	Durations	and	Costs	
--	------	-----------	------------------	-----	-------	--

Type ¹	Duration ²	Cost ³
DC	3 to 4 years (4 to 9)	\$45M to \$68M
COL	2.5 to 3.5 years (4)	\$28M to \$30M
ESP	2 years (3 to 6)	\$6M to \$19M
OL	3 to 3.5 years (8)	\$42M

1) DC = Design Certification, COL = Combined Operating License, ESP = Early Site Permit, OL = Operating License

2) NRC Generic Schedules: <u>https://www.nrc.gov/about-nrc/generic-schedules.html</u>

3) NRC Letter to Senator Inhofe April 7, 2015 (ML1508A361)

Advanced Reactor Licensing Progress

ŊÊI

Approved

1.NuScale Power

Under Review

*Non-commercial reactors

Nuclear has a unique value proposition for the net-zero grid

1. Additional applications include clean hydrogen generation, industrial process heat, desalination of water, district heating, off-grid power, and craft propulsion and power

2. Renewables + storage includes renewables coupled with long duration energy storage or renewables coupled with hydrogen storage

